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ABSTRACT 

The applicaton of simulation techniques provides a convenient and useful 
means for studying and developing signature analysis schemes to describe 
orbiting body configuration, orientation and motion. 

This paper discusses a simulation of the overall body motion characterized 
by the orbital and local motion about the center of mass.    This motion is rela- 
ted to the observations made by ground stations and provides orientation of the 
total motion in the antenna axes systems and orientation of the lines of sight 
relative to the ground. 

Since only the basic characteristic motions are required and exacting 
simulation to some existing satellite is not necessary, certain simplifications 
are introduced.    These include omission of perturbations and observational 
errors and the elimination of a true time requirement and a time based 
progression reference. 

The emphasis here is on a description of the equations, relations, and 
transformations of the simulation model. The computer program based on 
this simulation model is described in a separate report. 

in 
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1.0  INTRODUCTION 

The overall motion of a satellite is characterized by its 

orbital motion and local met ion about its center of mass.  It is of 

interest to discern both these motions from ground viewing stations. 

Thus it is desired to relate the motion to observations at a complex 

of earth stations each of which totally positions the body in space 

relative to its line of sight.. 

For a given system and operation mode , correlation of the observa- 

tions to the body motion can provide a method for developing signature 

analysis techniques for describing body configuration, orientation, 

and motion.  Simulation of the body motion and measuring techniques 

provides a convenient approach for carrying out such a study. 

This paper will be restricted to a discussion of the simulation 

of the body motion only.  It will relate this motion as a final output 

to a receiving antenna ax.ia system along the line of sight.  What 

is discussed for one site carries over to any other site. 

The equations, telatioos. and transformations required in the 

consideration of overall motion have been considered in earlier internal 

reports by the author.  The latter reference includes a simulation 

of the resulting scattering matrix from stored scattering data and sets 

up radar outputs for various polarization modes.  This radar simulation 

also includes the effect of Faraday rotation and noise. 

In a computer program many variations are possible.  These include 

differences in describing the station, orbit, and their combination 

for observation.  The present paper presents a somewhat simplified ver- 

sion, as compared to earlier reports by the author, of the motion simulation. 

Since only the ba^ic motions are required  no perturbations 

or observational errors are included.  Again, since it is not the 

intention here to simulate motion of any existing satellite as close 

as possible, accounting for true time, taking time as a progression 

reference, and solving the transcendental Kepler equation (see section 

* A description of the program already completed, will be given in a 

subsequent report. 
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on orbital motion,/ also become  unnecessary. 

Thus, using a revolving spherical earth and earth surface fixed 

site locations (earlier internal reports of the author comment on 

ellipsoidal earth and nonzero altitude stations), the orientation of 

body fixed coordinates with respect to antenna coordinates are deter- 

mined with time   Ihcse determinations are specified in terms of 

three orientation angles.  in addition, the orientation of the station 

line of sight relative to the ground and the station to body range 

are provided   In the radar case, these angles are used to look up 

stored scattering data obtained either from measurement or calculation. 

Boch stabilized and unicabi.lized motion of the body are considered. 

It is in the latter, no torque, case that the simulation of local motion 

enters.  The stabilized modes of major importance, spin stabilized, 

horizon stabilized, and earth centered stabilized, are accounted for 

by establishing the proper orientacion. 

2.0  THE SIMULATION MODEL 

The basic technique of tne simulation involves a sequence of six 

coordinate transformations..  I he coordinate systema dealt with are 

designated in order as follows, 

1.  geometrical bodv aits,    "fb'r, describes body geometry and 
svmmetriest 

"ibr, describes conveniently body motion 
- ^     about center of mass 

2.  inertial axes 

5,     angular momentum, \%\'   used as a reference with respect 
tc body local motion 

orbital, ]?K usec^ as a reference with respect 
to earth motion 

geocentric, 1&K use^ as a reference with respect 
to earth motion 

topocentric, 1sr> moves with earth and locates the 
s I t e (s) 

l' i 

radar, 1r|> moves with radar and accounts for 
antenna orientation 

t In the radar case, this provides a reference to which scattering data 

is related in terms of a radar measurement coordinate system jr'y. Details 

are given in an internal report by the author as well as in reference 1. 
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With perturbations on orbital and local motion due to, for example, 

earth oblateness, drag, solar system influences, solar radiation, and gravity- 

magnetic torques omitted, the jgk \*\,  and -jIV systems are inertial.t 

Also a Keplerian orbit in a true square law force field is used.  In 

calculating the earth rotation rate UUp , account must be taken of the 

earth revolution which effectively increases the rotation of the is\ 

frame with respect to the jgf frame, for existing satellite simulation. 

There are six linear transformations relating each coordinate 

system with the one which follows it in the list above.  These trans- 

formations are thus designated: 

Tb,b.V?. T?,5- TC,8' Tg,s' T... 

The relation of the ib'r system to the -jbr system can be specified or 

calculated from body mass data from diagonalization of the inertia 

tensor.  T, ~ T   and T   are time varying where T, * carries the b;?g,s     s,r ° b,: 
local motion, T   carries earth rotation and T   reflects orbital 

g>s s,r      , -, 
motion which is specified by the radius vector Rff in the i § [• system. 

r -p     L"J 
Local motion is specified by movement of the ib'f inertial axis system 

with respect to the -\" r  system.  The overall orientation of the body 
f     \ rJ        f ! 

axes ib'f to the radar system irr is given by the product of linear 

transformations from which three orientation angles are determined. 

Tu.  = T   T   I.   T~ _ T, ~ T. ,. 
b*,r   s,r g,s c,,g  5,? b,%     bjb 

A brief discussion related to the different transformations is 

appropriate prior to presenting the overall simulation logic. 

Each of the transformations can be given with respect to a 

coordinate system as a 3 x 3 matrix, T  . relating the a system to 
CC,P 

the B system.  More precisely, T   converts the coordinates of a 

f \ a'^        (•) ~ vector in the iCXr to its coordinates in the •j3jr system.  T  :1 on 

the other hand, relates the basis vectors of the •f3f system from the 

basis vectors of the jar system. 

+ 
Additional detail is given in an internal report by the author. 



In general 

a,0 = (T ' ) a,3 

It is sometimes easier to consider the T _ in terms of the 

T Q transformations as successive axes movements. 

Certain of the T R are considered composed of factor trans- 

formations each of which are pure rotations (in some plane) T  , s 

that (Tw)' = CT' )  . 

Then 

T   = T (and so I'   - T  ") 
a,3   a,3 

Tb',b: 

Ybd2) 

"V 

Xbdx) 

1 Prime is transpose and ( )   is inverse 



Vb= = (a/ a4 da')1" 

^ , CXg , a3 are the direction cosines of X, onto •jb'r 

0i> 1^2, 03 are the direction cosines of Y, onto "jb'f- 

Yi > Ys >   Y3 are tne direction cosines of Z, onto jb'r 

The Ix , I3, I3 signify the moments of inertia along the correspond- 

ing principal moments of inertia axes X, , Y , and Z, respectively. 

The jb'r system has its coordinate axes along directions determined by 

body geometry and symmetries.  In general the jbr and "jb'r systems 

will not coincide.  The specification of T' , is effected in a number 
b, b 

of ways. 

1. By inserting as input data, 

2. By calculation from body mass and configuration data, 

3. By specification as identity (T, ,, = I). 

The calculation, if performed, is done so only in the torqueless, 

unstabilized mode.  For all stabilized modes it is sufficient to 

consider no difference between the -jbr and "jb'r systems (T, ,, = I) 

with controlled orientations taken with respect to the ib'r system. 

b,i 

t 
CXi is a column vector with components 0^ , @i , Yi etc.  Indeed a*1, Og , aj 

are eigenvectors of the moment of inertia tensor. 
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. is Che direction of the angular momentum vector of local motion, 

fixed in inert ial space.  The ?; , |s vectors form a right handed i ? r 

system and arc specified with respect to the \f,r  as noted later. 

lhe Euier angles 9, f,   ? measure the motion about the center of 

mass of the body inertia axes "]br relative to the fixed in space system 

1"f.  The line of nodes is the intersection of the (X , Y ) plane and 

the (fijj , ?2) plane.  A description of the equation describing the Eulei 

angles as functions of time is given below under the section local 

motion.  We have v 

~     ~CT ) (2 ) (1)       v 

Yr*Tb,?-Tbi(-0) Tbi(~9) <? (-¥) 

sin(-C)   0 \ < 1    0 

0   cos(-Q) 

v 
1 —1 TT/2 

v + r;/2 

0   \ /cos(-'f)   sin(-Y)  0 

sin(-O) l (-sin(-i)   cos(-Y)  0 

0 -sin(-G)    cos(-9) 

0 0     \   /-sin 

cos  9    - sin 9 ]l-cos 

sin 9       cos  9/1       0 

T,   -(l)(-^)     takes • Y, 

\H 
T,   ->v   '(-9)     takes ( Y' 

b,5 ib 

into 

into 

T,   »(3)(-0)     takes < 

fcj 
into 

t  In  general   the   angle  between Xb  and  Z,i "* 0+^'  as   6"*° 



For spin stabilized mode, Z, ,= Z, is fixed in the j§r system and 

Y = 0   (the spin rate about Z') is fixed. 
b 

cos Y  -sin Y  0 \ 

Then TK y  = ( sin Y  cos Y  0 Lb,? 
0 1/ 

(i.e., 9=0, 0 = 0,   Y=Y + YAt) 

For horizon stabilized mode, Z, i« Z, is parallel to R_ and thus the 
b   b 5 

system is bypassed and 

{?} 

T ~ = I 
h    s 

v  v  v 
(i.e., 0 = 0 = Y = 0) 

For earth centered stabilized mode, Z, i = Z, is parallel to R_ and 
b   b..  . v Z 

thus similarly, V? = I (i.e. ,  0  = 0 = Y = 0) 

L?,5: 

§a   fin   plane  of 
£ F    \ 

4 
§x   (not  in plane  of  §x,   §2) 



Since rotation of thevf^ ,   ssjplane about §3 is arbitrary, we choose 

Ty _ to be given only by the two angles ax and Og.  (In fact, 0(0), 
( 

which measures the initial rotation of the ibf- system about \3 ,   is 

specified and arbitrary in any case.)  §j is in the airection of 

perigee from the •|5r origin .earth center), §3 is normal to the orbit 

plane, and %a   forms a rignt handed coordinate inertial system. 

*t.*m\c\ (  Ctc )   Ty „ '     (-a, )   = |   sin a8     cos Oa     0 l?,§ 

cos Oj -sin Og     0\ /  cos Bj     0  -sin cA 

0 10 

1/ \   sin 0.i     0     cos Otiy 

For  unstubilized motion a,j,   and a2   are   specified  as   input. 

For  spin  stabilized motion Q^   and Og   are specified as   input, 

For  horizon  staDilized motion ax   - n/2  is  specified  and us= 02 

(places  Z  ,in parallel with R_) 
b 5 

For  earth centered  stabilized CJi   «•  TT/2   is   specified  and Og   • 0j 

(places  Z. , in  parallel  with R_) 

The   time  variation of   the   radius  vector  of  the  orbiting body,  R_, 

and   the  determination of  the  angles  0X   and 0aare  given below  in  the 

section  on  orbital   motion. 

•?.*• 

f-iSS^^v a 
si 

line of nodes 



The geocentric coordinate system "jgr is chosen in an arbitrary way 

since initial time is of no consequence for the purpose of this 

simulation.  In other words, the X direction is taken as the direction 
g 

in space made by the earth radius passing through the equator at 0° 

longitude at an arbitrary initial time, t , which is taken as zero. 

The Z  is the direction from earth center through the north pole at t . 

Y completes a right handed inertial system.  With no perturbations |u,A, and 

f« are time invariant where: 

U = inclination 

A = argument of perigee t 

ii  = right ascension of ascending node 

cos u -sin i.    0 \ /1 

cos L    0 I 

0     0 

cos M -sin p. T_ = T_  = sin !. 
5,g  ?,g 

0     0   1 / \ 0  sin |j cos |_i 

cos A - sin A 0 

sin A cos A 0 

0     0   1 

g.s 

Site location 

p = earth radius (assumed 
fi::ed) 

ee+rn—/ 2 = i) 

+ 
Perigee or apogee are convenient choices of orbit epochs in an orbit 

period. 



The Z_ direction is normal to earth surface pointing away from the earth 

at the site while X and Y  determine the tangent plane at the site s      s or 

with X  along a meridian to the north and Y  pointing west where 
b S 

A   =  longitude  of   site m >   A.    .   2n) 

T) = measures   latitude   of   site (-rr/2  £ X] ^ TT/2) 

g.s 

I cos   p  0   sin 3 \  /cos a  sin a  0 

I  0   1    0   j 

\-sin 3  0  cos p 

where  a = l%At + \  + TT ; 

= .7) - TT/2 

sin a  cos a  0 

0     0    1 

At = t - t o 
(with t  arbitrary we usually take 

t0 = 0)
f 

s,r 

S 
1 

X^7 

tan (t9/tj) 

vRc 

i    e( 
i 
—> Y. s / 

1 / 

^"With simulation of actual orbits, fixing igf in space at t  consistent 

with astronor 

equinox time 

with astronomical data would mean, for example, taking t  as vernal 
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R 
s 

in the 

is the radius (line of sight) vector to the orbiting body expre 

{4 system.  R  and the look angles 9 and 0 will bu  cori.si'i. 

in the section on orbital motion. 

The Y  of the radar system lies in the (X , Ys) plane, that i. 
A 

remains horizontal.  It then is the axis about which elevation, 9, 

changed.  0 measures azimuth change. 

8,r 

0 

1 

0 

A 
cos 0 sin 0 

A 
COS 0 

0 

Lb;r- 

line of nodes t 

T, . = T   T   T.   T-y . T, ~ T, , , 
b*,r  s,r g,s c,g §,§ b,5  bl,b 

* In the radar case, the line of nodes coincides with the X , of tho 

radar measuring system -4 r' J* which is a rotation of jrr about Zr of 

-33.  Yr and Yr> are horizontal axes in their respective systems 

9~ and ~0  are drawn to be consistent with an adopted use in the jr'p 

system for scattering measurements (see reference 1 ), 

11 



ai l        al a        ai 3   \ 

^Ij'r  ~     &zl        asz       as3 

a 3   I Hr, *3 3 

/cos   p3 sin p 3 

•    l"Sin    ^3 
\    0 

cos  ^3 

0 

Owl 0 0      \ /cos  3a       sin 32       0 

OHO       cos  ,:-L        sin $i ]j-sin 3a       cos  £2       0 

1 / \ 0    -sin 3i        cos  B1   \     0 0 1 

This  gives 

ax!   =  cos  33   cos  p2   -sin 33   cos  3i   sin 32 

a21   =-sin p     cos  3    - cos  3     cos  3i   sin 3 2 

a31   =  sin  3i   sin 32 

a15   =  cos   3      sin  3     +sin  p cos   3-,    cos  3 . 
3                    2                       3 2 

aau   --sin  3     sin 32 +cos  33 cos  3i   cos  3 2 

a32   =-sin 3i   cos  32 

a^3   =   sin  p     sm  px 

a23   =  cos  3-3 sin 3i 

(l-afg)^  i ., 
Then  3i   =  tan       j           =  cos       a33 

L a_o 3        J 

3a   =  Can "(r^) 

"(tr) 3S   =  tan 
393 

e = pj ,-0 = o TT/2 - 3 ), = p 
2 

9, 0, and 33 are the final antenna body orientation angles. 

The overall simulation logic can now Lc conveniently displayed schemati- 

cally by the following diagram.  Of course either stabilized motion or 

local motion is appropriate.  For convenience both are shown.  The 

12 



on 
—«- 

Co- 
1 
o+- 

<CD 60 
C 

4-1 
;-H 05 
3 Oj 

IT H 
1 u 
< 

CD 

ss 

Oj 
N 

CO 

c 
o 

•H 
4-i 
C 
X 

X- 
eg 
4-1 
05 
f= 
3 

b
rb

it
 

; M
o
ti

o
n

 
C

al
cu

la
- 

ti
o

n
s 

~ .     1 

i 

e 
>-i 
SO 

to 
c 

0 
•H 
4J 
CO 

S-i 
0/ 
> 
o 

c 
•rH 

e 
M 
0j 
4-J 

o 
-o 

c 05 
O—I 

•H 
4J >> 
13 4J 
4-l-H 
05.—i 

•1-4 
OjX 
X-^ 
4-1 01 

•i-l 

3 > 
O 

i—IM-I 
^ o 
to 

c 
o o 

05-H 
co en 

0 
•CO. 
u 
34-1 
05 K 

0j 
05 C 

Oi 
«CDX 

qJ4-l 
X 05 
4J  O 

r—» 
O 
0/ 05 
05—1 

Q4-I 
4-1 O 

CO 
05 4-1 
j* c 
U C 
w U 
X 
U C 

05    • 
0,-J 
4J w 

C l-i 
O CO 
•~4J 
4-1 
•H O 
05X 

•H4J 
a 
CT3 
CJ  <b 
C0T-< 

13 



symbol (x) designates alternate paths.  The logic flow chart for the 

actual program appears in a subsequent report. 

3.0  ORBITAL MOTION 

With an inverse square law radial force field from earth center, 

the equation for motion in the -|§r system becomes 

with d = constant, accounting for gravity and the mass of the two 

body system.  In the metric system, for example 

d = 3.9858 x 105 km3/sec? 

This results in planar motion, that is R x R = constant so that 

R = a R + b R ; with a and b scalar functions of time and o     o' 

R  and R  evaluations at some time t'. 
o      o o 

Choosing t1 to be the time of perigee and the -j§r coordinate system 

then places R along cl , R0 along %3   and gives 

a   k 
R,-(t) = a(cos E-e) $i + a(l-e )  sin E £2 

k   ' 
and      R-(t) = -a E sin E ?j, + a(l-e*K E cos E %2 

where a is the semimajor axis of the elliptical orbit and e is the 

ellipticity of the orbit.  E(t), the eccentric anomoly 

is related to t in Kepler's equation 

E-e sin E - (d/a3)2 6t   ;   , t = t - t' 

(E = (d/a3)^ /(1-e cos E) ) 

14 



where t' is time of perigee crossing.  If initial time t„ is not t' O roo o o 

the Kepler equation is slightly more complex but straightforward.  We 

take tQ = t'.  Also equal increments in At produce unequal increments 

in E and vice versa.  Solving for E from t is difficult whereas solving 

for t from E is direct.  The programmed version discussed in a 

subsequent working paper uses equal increments in E as reference. 

For simulations of actual orbits where motion is referenced to real 

times, solution of the Kepler equation for E can be accomplished using 

an iterative scheme such as Ne^ton-Raphson. 

From the expressions for F„ and Rff we have 

-l f (l-e3K sin E 
^ = tan  L ' cos E-e J 

ta •-' [ =8 -JO. 
n E 

5- 

Si 
perigee 

Let f(E) = (E-e sin E) -A ; A(t) = (d/a3K(t- tQ) 

f(E) = df/dE = 1-e cos E 

With En the n
th estimate of true E, let hn be such that 

f(En) + hn f(En) = 0, i.e., hn = 
f(V 
f<En) 

We take E + i " hn 
+ En and rePeat the process for hn+1 

|f(E )| < t, a preselected small number. 

1.5 

until 



Now R. !t i = T 

-': *-a 
+ -2', + r'3^b      where as noted before, p is earth 

radius taken away from earth center, 

?    2    ? \ 
• 1 + -. - + ;, 1 

the.    3 = t*-. l ----- R3 

3 = n + 

e3 

(?) 

Ilie   ci'om.try   or   0   and  £   va->   cbowo   in   cue   discussion  of   T in  the 
t 

P t •: wio'us   &ac t .1 oa „ 

A 
Of various acquisition tests a useful and simple scheme compares 9 

A 
against some Qx   such that 

A     A 
if 'i)  0 < 9l ,   target visible 

A    A 
l.ii)  9 ^ 0X , target not visible 

If (ii) holds,proceed along orbit until (i) holds. 

If (i) holds ,continue with main calculations. 

4.0  LOCAL MOTION 

The movement of any vector fixed in the body and so moving with 

the jbr system with respect to the 1 §r system can be described by the 

three Euler angles Q(,t"), Y( t) , and 0(t) defined in the discussion of 

T, y.     Indeed, these angles satisfy the following Euler differential 

equations, for zero applied torque. 

We call the plunged condition of the radar with 0 + TT rather than 0 

(also possible).  Then for X above the (Xg, Yg) plane in the normal 

condition, Xr and Rs have projections in the plane in opposite direc- 

tions whereas in the plunged condition X is below the (Xg, Yg) plane 

and the two projections lie in the same direction. 

16 



di-i8) 9 = ——  = M sin 9 cos ¥ sin Y = nutation rat^ (lei an: 
12 A9 variations) 

M      3      M      3 
0 = — cos  Y + —  sin  ¥ = precession rate 

J-i Is 

•   /M    M     3 ,..   M   . 3 w N       . T • i — - —    cos  i - T sin ¥ ) cos 9 = spin rate 

where for generality * we take I: ^ Ig £ I3 as the three moments of 

inertia with respect to the principal axes of inertia X, , Yu, Z.  and 

M is the magnitude of the angular momentum, M along t,3 . 

Denoting the corresponding angular velocities as Q1(t), f*a(t) anc 

fi3(t) with directions along the X^, Y^, Z^ axes we have 

., r Ia 0., (0) I .if L CL (0) 1 
8(0) - cos  [ —^ J ,  T(0) - tan [ ^i2  J 

and  M = T.       I, u. ,     M2 = 2  1^ Q^ , 
l =1 i=l 

0(0) is arbitrary and is specified.  Note initial values of 0 am 

reflect initial values of 9, 0, and Y. 

The solutions to the Euler equations (see reference 2') are obtained 

in series which allow for approximations to any desired accuracy 
tt These solutions are: ' ' 

In all t«3es each moment of inertia along an axiu is Lest t.h&'. 

equal to the sum of the moments of inertia along the other uwo 

orthogonal axes,  For definetness the inequalities are used. 

' In order that the expressions for 9(t), f(t), and 0(t) be consi&cont 

with initial conditions, the t used in these expressions should be 

shifted with respect to true (orbit) time. 

17 



.       m         -l /(slnh  y-q2ainh   3v +»-«)(l+2q  cos   2(-it+2q4cos  4|0t +• • •) \ 
'"(cosh v+q2cosh   3Y +---)d-2q  cos   2|at+2q4cos  4|jt )  J 

£..(ia/2K)    ^(Xt/2K) 
from cos  9   = 

l^10(ia/2K)^01(Xt/2K) 

(^xx   ()   are   the   four   types  of  theta functions  and K  is  the  complete 

elliptic   integral   of   the   first kind.) 

_ -I f(l+2q cosh 2y-*-2q cosh 4y +***)(sin Ut-q sin 3Ut+«»«)^ 
1(1- 2q3cosh   2y+2q cosh  4y-# • O(cos Mt+q  cos   3pt+. ••)   J 

^00(ia/2K)^11(/t/2K) 
from  tan '+:   » 

3ol(ia/2K) ^10(U/2K) 

e2i0(t): „.   ,             ("„. rM          .       ,  q  sinh  2y-2q*sinh 4v +• • •          ,i ,. 1 
F(t) exp \2x [-•   + 4n ( e— ,!  0\! 4—^-7—-— )1 t  1 I Jx                   l-2q  cosh  2y+2q  cosh 4y  +• • •             •> 

f r  M           X   2 01    (W2K>   n     \ =  F(t)   exp  |2i [ -    +2«^    (ia/2K)   3t } 

where 

q=k<716   + k4/.j2  +•"•   ; q2 =  e     K   'N.   modulus   of  K   is  k. 

ik'lP.(ii)   •^^,; cf   it«i 
I2-I3         (IiC-M2) i = 1      L      1 

=  modulus   of  K'   =   1  -  k? 

TV_        a       (Ia-IaJ-.CI^M8) 

^       2K   ' IiI3Ia 

y   =  na/K,    (— )*   =   1   +  2q  +  2q4 +  2q9   +• • • 

flzihC-rf))        ^OQ(ia/2K) 

ll^IsC-M2)/   =   C)01(ia/2K) 

,At-ia. 0     (At-ia 

F(t)   . /V     2K> 

01 v     2K 

B   is   a  constant   specified  by 0(0). 



Together with 0(0), q, \JL,   and v represent a possibly more convenienL 

input set than I., CL, i"l»3.  Indeed for q « 1, a meaningful associa- 

tion gives q as a measure of nutation amplitude, A9, n as a measure of 

spin rate, i, and y as a measure of precession angle, 9.  Writing 

e2i0(t)= e2i(0x + 08) 

*    9' (ia/2K) 

then 02(t) = constant, measures average rate of 0 variation (precession 

rate) and 0i (t) accounts for (periodic) variations about the average 

0 (-0a). 

The frequency of the 9 and Y periodicities = =—. 

The frequency of the 0l   component of 0 = ^, 

The frequency of the 02 component of 0 = TT08 . 

Various interesting special cases occur.  For example constant 

precession (0X = 0) is obtained about 5a with spin about Z, when Ix= Is . 

(See reference 1.)  For unstabilized bodies the particular motions of 

interest are normally tumbling, precession and nutation.  In the long (tL.w) 

term, the dominant motion is usually tumbling.  All of these motions 

represent simplifications of the general motion. 
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